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Introduction 

Due to travel restrictions, tourism is one of the most affected sectors by the Covid-19 outbreak; 

this is the worst tourism disaster Malaysia has ever seen. Inbound tourism was suspended as 

countries closed their borders and restricted travel to prevent the virus from spreading, while 

the local tourism sector was severely harmed by the Movement Control Orders (MCO). 

Tourism is Malaysia's third-largest source of revenue, and it plays a significant part in the 

country's economy. In 2019, tourism accounted for about 15.9% of overall GDP, and it is 

predicted to lose at least 60% of its tourism business by 2020. (DW, 2020). In addition, the 

pandemic forced Malaysia to cancel its "Visit Truly Asia Malaysia 2020" campaign, which 

sought to draw 30 million people and earn RM100 billion in tourism revenue by 2020. As a 

result, Malaysia's tourism business was crushed by the Covid-19 outbreak. 2021 (Malaysian 

Investment Development Authority). 

  

This report will first walk you through the process of selecting the best fit ARIMA model to 

forecast with. The best ARIMA model identified will then be compared to the ETS model 

identified by R. In time series data forecasting, the ARIMA and ETS models are widely used. 

The difference between the two models is that ETS models focus on the trend and seasonality 

of the data, whereas ARIMA models focus on the autocorrelations of the data (Rpubs, 2020). 

  

Our report's goal is to thoroughly investigate the financial impact of the Covid-19 outbreak on 

tourist arrivals in Malaysia using ETS and ARIMA models. Meanwhile, the ETS and ARIMA 

models are being compared to see how well they forecasted the loss in tourism arrivals and the 

difference in both forecast models. 
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Phase 1: Model identification 

 

Figure 1: Malaysia’s Monthly Tourist Arrival from January 1989 to March 2021. 

 

From Figure 1, we can see a generally increasing upward trend from 1990 to around 2010 

where it starts to plateau off. When deciding the length of the forecasting series, the forecasting 

series should be extended backwards only to times where the environment is believed to be 

fairly similar to the forecast horizon (Shmueli, 2016). Therefore, we will only take data where 

it shows a plateauing pattern, from January 2010 onwards to March 2021 to be our full dataset. 

The full dataset consists of 135 observations. 

 

We then separate the full dataset into “Pre-Covid” and “Covid” where “Pre-Covid” period 

consists of 121 observations, spanning from January 2010 to January 2020. The “Covid” period 

consists of 14 observations spanning from February 2020 to March 2021. 

 

The “Pre-Covid” dataset is then partitioned into a training and test set using the 80:20 split 

ratio. The training set spans from January 2010 to January 2018 and the test set spans from 

February 2018 to January 2020. The training and test sets have 97 and 24 observations 

respectively. The training set is plotted out in Figure 2 and shown below.  



   
 

3 
 

 

Figure 2: Malaysia’s tourist arrival training dataset. 

 

ARIMA models require a stationary series therefore we will be looking at the plot to see if the 

mean and variance is constant over time. Looking at Figure 2, the training dataset is seen to be 

non-stationary with slight seasonality present. The variance is seen to be arguably constant 

therefore a BoxCox transformation is deemed not needed. As for the mean, it is not constant 

and does not show a mean reverting behaviour and, we can see a mild upward trend from 2010 

to around 2014. Hence, differencing would be required to stabilise the mean. Firstly, a seasonal 

difference will be taken with lag = 12 as it is a monthly dataset. Besides relying on data 

visualisation, the nsdiffs() function in R is used to help us to determine the number of seasonal 

differences required for this series to be made stationary. The nsdiffs() function returns a ‘1’ 

suggesting a need to perform a seasonal difference. The seasonally differenced Malaysia tourist 

arrival training dataset is plotted and showed below. 
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Figure 3: Seasonally differenced Malaysia tourist arrival training data plot, ACF and PACF. 

 

From Figure 3 shown above, the seasonally differenced dataset shows a mean reverting 

behaviour around 0 with a somewhat constant variance now. To check if the seasonally 

differenced series is stationary or a further difference is needed, the ndiffs() function is utilised 

in R. The ndiffs() function returned a ‘0’ which concludes that the seasonally differenced data 

is stationary and no further first differencing is required.  

 

As the series is now stationary, we will move on to identifying possible 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚   models. (p,d,q) represents the non-seasonal part of the model 

whereas (P,D,Q) represents the seasonal part of the model. m represents the number of 

observations per year. In our case, m would be 12 as we are dealing with monthly data. As d 

and D represents the order of integration for non-seasonal and seasonal differencing order. D 

= 1 because seasonal difference was performed once and no further first difference was 

performed hence, d =0. 

 

By looking at the ACF plot for pure MA components and PACF plot for pure AR components. 

The significant spike at lag 1 to 3 in the ACF plot suggests a non-seasonal MA(3) component, 

and the significant spike at lag 12 in the ACF suggests a seasonal MA(1) component. From 

this, we can identify an 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12  model. As lag 4 in the ACF plot is quite close 

to being significant, we can identify an 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 model as well. Bringing our 
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attention now to the PACF plot, the significant spike at lag 1 and almost significant spike at 

lag (2) suggests a non-seasonal AR(1) and AR(2) component, and the significant spike at lag 

12 in the PACF suggest a seasonal AR(1) component. Therefore, suggesting an 

𝐴𝑅𝐼𝑀𝐴(1,0,0)(1,1,0)12 and 𝐴𝑅𝐼𝑀𝐴(2,0,0)(1,1,0)12 model.  

 

Furthermore, looking at the training dataset in Figure 1 showing no clear upward or downward 

trend, all identified ARIMA models will not include a constant as we expect the long-term 

forecasts to go a non-zero constant determined by the last few observations and not show a 

upward/downward trending behaviour. Accordingly, a total of 4 ARIMA models are identified 

which are the 𝐴𝑅𝐼𝑀𝐴(1,0,0)(1,1,0)12 , 𝐴𝑅𝐼𝑀𝐴(2,0,0)(1,1,0)12 , 

𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 models. 

 

Phase 2: Estimation and testing 

Besides the 4 ARIMA models identified earlier, auto.arima() function in R is used to identify 

another ARIMA model. However, the ARIMA model suggested by auto.arima() function 

coincides with the 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12  model identified earlier. Therefore, we will 

proceed with only 4 ARIMA models. After estimating all 4 ARIMA models, the estimated 

parameters and information criterions are displayed in Table 1 and Table 2 below. 

 

ARIMA models Parameters 

ARIMA(1,0,0)(1,1,0)12 𝜙1̂ = 0.4706, Փ1̂ = −0.3934  

ARIMA(2,0,0)(1,1,0)12 𝜙1̂ = 0.3912,  𝜙2̂ = 0.1647, Փ1̂ = −0.3695   

ARIMA(0,0,3)(0,1,1)12 𝜃1̂ = 0.3016, 𝜃2̂ = 0.1935, 𝜃3̂ = 0.3009, Θ1̂ = −0.4777  

ARIMA(0,0,4)(0,1,1)12 𝜃1̂ = 0.3057, 𝜃2̂ = 0.2098, 𝜃3̂ = 0.4141, 𝜃4̂ = 0.3538, Θ1̂

= −0.4673 

Table 1: Estimated parameters values for all 4 ARIMA models. 

 AIC AICc BIC Rank based on AICc 

ARIMA(1,0,0)(1,1,0)12 2255.88 2256.17 2263.21 4 

ARIMA(2,0,0)(1,1,0)12 2255.61 2256.11 2265.38 3 

ARIMA(0,0,3)(0,1,1)12 2253.58 2254.34 2265.79 2 

ARIMA(0,0,4)(0,1,1)12 2246.74 2247.81 2261.39 1 

Table 2: Information criterion values of all 4 ARIMA models. 

From Table 2 above, we will rank the ARIMA models according to their AICc values and 

select the top 2 models. Based on the AICc, 

𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 models have the lowest AICc values of 

2254.34 and 2247.81, respectively. We will proceed with diagnostic checks on the residuals 

for these 2 models to see if both models are adequate for forecasting.  
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Figure 4: Residual plot for ARIMA(0,0,3)(0,1,1)[12] model. 

 

Looking at the residual plot for the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model, the plot shows a mean 

reverting behaviour with an arguably constant variance. The residuals seem to be normally 

distributed by looking at the normal distribution plot. The ACF plot shows only one significant 

autocorrelation at lag 4. However, the autocorrelation value around 0.2 is relatively small. All 

the other autocorrelations fall within the 95% confidence limits. From Figure 3, the residuals 

appear to be white noise and normally distributed. Nonetheless, a formal Ljung Box test is 

conducted below to check if the residuals are white noise or not.  

𝐻0: 𝜌1 = 𝜌2 = 𝜌3 = ⋯ = 𝜌19 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜌𝑖 ≠ 0 𝑓𝑜𝑟 𝑖 = 1,2,3, … ,19 

Decision rule: Reject 𝐻0 𝑖𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼(= 0.05) 

Decision: 𝑆𝑖𝑛𝑐𝑒 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (= 0.1719) > 𝛼(= 0.05), 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻𝑂 and conclude 

that the residuals are white noise.  
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Figure 5: Residual plot, ACF and normal distribution plot for ARIMA(0,0,4)(0,1,1)[12] model. 

 

Looking at the residual plot for the 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 model, the plot shows a mean 

reverting behaviour with an arguably constant variance. The residuals seem to be normally 

distributed by looking at the normal distribution plot. The ACF plot shows that all 

autocorrelations fall within the 95% confidence limits. From Figure 4, the residuals appear to 

be white noise and normally distributed. Nonetheless, a formal Ljung Box test is conducted 

below to check if the residuals are white noise or not.  

𝐻0: 𝜌1 = 𝜌2 = 𝜌3 = ⋯ = 𝜌19 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜌𝑖 ≠ 0 𝑓𝑜𝑟 𝑖 = 1,2,3, … ,19 

Decision rule: Reject 𝐻0 𝑖𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼(= 0.05) 

𝑆𝑖𝑛𝑐𝑒 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (= 0.6824) > 𝛼(= 0.05), 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻𝑂 and conclude that the 

residuals are white noise.  

Both models can be used for forecasting as both series are concluded to be white noise. Using 

the same training and test set mentioned in Phase 1, we fitted both ARIMA models using data 

from January 2010 to January 2018 to forecast the test set ranging from February 2018 to 
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January 2020. The forecast of the test set using both models are computed and plotted below 

in Figure 6.  

 

Figure 6: Forecast of test set using both ARIMA models. 

 

From the plot above, both 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12  models’ 

forecast of the test set are quite similar as the forecasts are constantly overlapping each other. 

Both ARIMA models are able to forecast the seasonality and trend present in the test set.  

 

We will proceed with evaluating which model out of the two is the better forecasting model 

using the traditional approach. The training data set is used to estimate the parameters of the 

forecasting method/model whereas the test set is used to evaluate its accuracy. Since the test 

set was not used when determining the forecasts, it will give a good indicator of how capable 

the model is able to predict on new data (Hyndman & Athanasopoulos, 2018). Using the 

accuracy() function in R, the RMSE, MAE, MAPE and MASE values of the training and test 

set for the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12  models are obtained and 

shown in Table 2 below. 

 

ARIMA models  RMSE MAE MAPE MASE 

ARIMA(0,0,3)(0,1,1)12 Training 119629.8 86831.85 3.9540 0.6601 

Test 158518.1 117046.82 5.4280 0.8898 

ARIMA(0,0,4)(0,1,1)12 Training 113077.3 83205.9 3.8110 0.6325 

Test 158819.8 119364.5 5.5352 0.9074 

Table 3: Training and test set error values for each ARIMA model.  

As shown in Table 3, 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model has the lower RMSE, MAE, MAPE and 

MASE test set error values as compared to the 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 model. Therefore, the 
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final model chosen to be the best forecasting model would be the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 

model. 

Backshift notation for 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model 

(1 − 𝐵12)𝑦𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2 + 𝜃3𝐵3)(1 + Θ1𝐵12) 𝜀𝑡 

 

Phase 3: Application 

𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model is re-estimated using the “Pre-Covid” data and the backshift 

notation is shown below. 

Estimated 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model using backshift notation 

(1 − 𝐵12)𝑦𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2 + 𝜃3𝐵3)(1 + Θ1𝐵12) 𝜀𝑡 

(1 − 𝐵12)𝑦𝑡 = (1 + 0.2963𝐵 + 0.1852𝐵2 + 0.3187𝐵3)(1 − 0.3935𝐵12)𝜀𝑡 

Forecasts for the “Covid” time period using the final 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12  model and 

produced and plotted below in Figure 7. 

 

 

Figure 7: Forecast of Malaysia’s tourist arrival for Covid period. 
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From Figure 7 above, the blue line shown is the point forecasts for the Covid period from 

February 2021 to March 2021 by the selected 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model and the light blue 

and darker blue shades represent the 95% and 80% prediction intervals respectively. The model 

is able to capture the seasonality present in the data well. The point forecasts are shown to be 

following the plateauing trend as seen from year 2015 onwards. As for the prediction intervals, 

the 95% and 80% prediction intervals are reasonably narrow and follows the pattern of the 

point forecasts. The narrow prediction intervals can be explained by the fact that ARIMA based 

intervals take into account only the variations in the errors when in fact, there are also variations 

in the parameter estimates and model order (Brockwell & David, 2016). Overall, the forecast 

by 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12  model seems fairly reasonable as it is able to forecast the 

seasonality and follow the trend from the previous data. Comparing the forecasts with the actual 

tourist arrivals in the “Covid” period, the selected ARIMA model is unable to forecast the 

structural break caused by the pandemic.  

 

Comparison with an ETS model 

Using the “Pre-Covid” dataset, forecasts for the “Covid” period using the ets() and forecast() 

functions are produced. The ETS model automatically selected by R is an ETS(M,N,A) model 

which suggests a multiplicative error, no trend and additive seasonality. After generating 

forecasts using the ETS(M,N,A) model. The full dataset consisting of the “PreCovid” and 

“Covid” time frame, 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12  model forecasts and ETS(M,N,A) model 

forecasts are plotted and shown in Figure 7 below.  

 
Figure 8: Forecasts of Malaysia’s tourist arrivals during Covid period using ARIMA and ETS 

models. 

 

From the plot above, both the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 and ETS(M,N,A) models were able to 

forecast seasonality. The red line represents the point forecasts for the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 

model and the green line represent the point forecasts for the ETS(M,N,A) model. The point 
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forecast for 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12  is generally higher than the point forecasts for the 

ETS(M,N,A) model. Both model’s point forecasts follow the plateauing pattern as shown in 

the plot. As for the 80% and 95% prediction intervals of the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model, 

the prediction intervals seem relatively narrow, it does not portray any pattern of increasing or 

decreasing trend. As for the ETS(M,N,A) model, the 80% and 95% prediction intervals are 

relatively wider as compared to the ARIMA model. Also, the wider prediction intervals of the 

ETS models shows the possibility of an increasing or decreasing trend in tourist arrivals unlike 

the prediction intervals of the ARIMA model. The reason why there is no such possibility based 

on the ARIMA model’s prediction interval is because the prediction interval calculations for 

ARIMA implies that historical patterns that were previously modelled will continue into the 

forecasting period (Brockwell & Davis, 2016). As seen in Figure 8, the historical pattern shows 

a plateauing trend which is why the point forecasts and prediction intervals for the ARIMA 

model is relatively following a horizontal trend. Generally, ARIMA model’s prediction 

intervals would increase as the forecast horizon increases. However, in our case, having a 

stationary ARIMA models with d = 0 produces prediction intervals that converge showing 

prediction intervals for long horizons to be the same (Brockwell & Davis, 2016).  

Sadly enough, both models are unable to forecast the drastic drop in tourist arrivals in Malaysia 

caused by the pandemic as both model’s point forecast follows the plateauing pattern. 

 

Average forecasted loss in tourism revenue 

As what we have forecasted using the ARIMA and ETS model in Figure 7 would be a plausible 

forecast for Malaysia’s tourist arrivals if the structural break (Covid) did not occur, we will be 

able to use this piece of information to calculate the average forecasted loss in tourism revenue 

for both the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model and ETS(M,N,A) model. Firstly, the loss in tourist 

numbers is obtained by deducting each month’s actual tourist arrivals during the Covid period 

(14 months) from the point forecasts of each month. It is then summed up to get the total loss 

in tourist numbers of the 14 months. 

The total loss in tourist numbers is then multiplied by the average spending per tourist of 

RM2930 obtained from Tourism Malaysia’s statistics on Malaysia’s tourism for the year of 

2020 (Tourism Malaysia, n.d.). The value obtained is divided by 1 billion to obtain the financial 

loss in billions. In order to obtain the range of forecasted loss, we used the upper and lower 95% 

prediction interval bound values to replace the point forecast, respectively, and repeated the 

steps above.   

Using the point forecasts of the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model, we calculated the average 

forecasted loss in tourism revenue to be RM82 billion. The range of forecasted loss is between 

RM70.38 billion to RM93.61 billion. As for the ETS (M,N,A) model, the average forecasted 

loss in tourism revenue is RM75.96 billion. The range of forecasted loss is between RM61 

billion to RM90.79 billion. 
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The average forecasted loss in tourism revenue using the ETS model is lower than the ARIMA 

model’s forecast by RM6.04 billion which makes sense as the point forecasts for the ETS 

model is generally lower than the ARIMA model as mentioned earlier. The ETS(M,N,A) model 

having a wider range of forecasted loss as compared to the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model also 

makes sense as well as it was presumed to be so by looking at Figure 8 earlier.  

Conclusion 

The ARIMA framework was used to quantify the forecasted financial loss in Malaysian tourism 

revenue in RM billion since the Covid-19 pandemic. The Box-Jenkins methodology was 

applied to find the best ARIMA model to forecast the financial loss in a systematic manner. 

Unlike ETS models which components are decided based on the trend and seasonality seen in 

the data plot. ARIMA focuses on the autocorrelations in the data. After deciding the time frame 

of our full dataset. We separated it to “Pre-Covid” and “Covid” period. The “Pre-Covid” period 

was then partitioned into training and test set. The training set was plotted to see if the mean 

and variance of the series was stationary as the key requirement of ARIMA models is that the 

data is stationary. After performing a seasonal difference, the series became stationary. Moving 

on to the identification part, as we are dealing with data with seasonality present, we had to 

identify 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚  models. After looking at the ACF and PACF plots to 

identify suitable ARIMA models, we identified a total of 4 ARIMA models which are the 

𝐴𝑅𝐼𝑀𝐴(1,0,0)(1,1,0)12 , 𝐴𝑅𝐼𝑀𝐴(2,0,0)(1,1,0)12 , 

𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 models. A constant was not added to all 

identified models. Subsequently, we ranked the models based on their AICc values and selected 

the top 2 models with the lowest AICc values which were the 

𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12  model. Diagnostic checks were 

performed on these 2 models and both models were found to be white noise. Using the 

traditional approach of evaluation, 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model’s RMSE, MASE, MAPE, 

MAE test set error values were all smaller than 𝐴𝑅𝐼𝑀𝐴(0,0,4)(0,1,1)12 model’s indicating 

𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model to be the better forecasting model.  

 

Moving on to the application part, the chosen 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12 model was re-estimated 

using the full dataset. An ETS (M,N,A) model suggested by R was then estimated and the 

forecasts for both ETS  and ARIMA models were plotted alongside the full dataset. Both 

models were unable to forecast the sharp drop in tourist arrivals during the Covid period.  

 

Lastly, the average forecasted loss in tourism revenue was calculated using the ETS and 

ARIMA models. As for the 𝐴𝑅𝐼𝑀𝐴(0,0,3)(0,1,1)12  model, we calculated the average 

forecasted loss in tourism revenue to be RM82 billion with a range of forecasted loss between 

RM70.38 billion to RM93.61 billion. As for the ETS(M,N,A) model, the average forecasted 

loss in tourism revenue is RM75.96 billion with the range of forecasted loss between RM61 

billion to RM90.79 billion. The estimated forecasted loss of RM82 billion and RM70.38 billion 

seems plausible as it was reported that Malaysia has lost over RM100 billion in 2020 due to 
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Covid (Reuters, 2020). The higher estimated loss could be due to the inclusion of financial loss 

from the local tourism sector.  
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